2k(7-5k)+11=6k+3(k^2-1)

Simple and best practice solution for 2k(7-5k)+11=6k+3(k^2-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2k(7-5k)+11=6k+3(k^2-1) equation:



2k(7-5k)+11=6k+3(k^2-1)
We move all terms to the left:
2k(7-5k)+11-(6k+3(k^2-1))=0
We add all the numbers together, and all the variables
2k(-5k+7)-(6k+3(k^2-1))+11=0
We multiply parentheses
-10k^2+14k-(6k+3(k^2-1))+11=0
We calculate terms in parentheses: -(6k+3(k^2-1)), so:
6k+3(k^2-1)
We multiply parentheses
3k^2+6k-3
Back to the equation:
-(3k^2+6k-3)
We get rid of parentheses
-10k^2-3k^2+14k-6k+3+11=0
We add all the numbers together, and all the variables
-13k^2+8k+14=0
a = -13; b = 8; c = +14;
Δ = b2-4ac
Δ = 82-4·(-13)·14
Δ = 792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{792}=\sqrt{36*22}=\sqrt{36}*\sqrt{22}=6\sqrt{22}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-6\sqrt{22}}{2*-13}=\frac{-8-6\sqrt{22}}{-26} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+6\sqrt{22}}{2*-13}=\frac{-8+6\sqrt{22}}{-26} $

See similar equations:

| -1/3=6/5v-2/3 | | 1/3y-2=-17 | | 2(2k-5)+4=-8 | | 3u+40+2u=6u30-u | | 2/3(1/2x-1/4)=3/4(4/9x+2/9) | | 8+7z^2-z=0 | | (x-180)=(x+42) | | 6p+9=75 | | 20/n=55/11 | | 35k=7/4 | | 8x-4=2x+40 | | -93=6x-9 | | (x-180)=x+48 | | 4s4=9 | | Y-40x=40-5x | | 280=8(7x+7) | | 30-5k=-6(3k+8) | | 2/5x-1/10=1/2x+3/10x | | 3(-4w+2)+10w=11 | | 5x-3=72x | | 5x+15+36=251 | | 3=2x^2-3(x-2)^2-12 | | 4(-x/4)=12 | | 1/3(6x-12)+4x=17 | | 3×+8y+10=0 | | x–2=8+2x | | 5.25x-2.01=8.94 | | 20x–10x+20=60 | | n/57=38/19 | | 4x=7=5 | | f3+ 3=5 | | (x)/(7)-8=(3)/(14) |

Equations solver categories